Data Science Projekte erfolgreich umsetzen!

Was brauchen Sie für die Umsetzung erfolgreicher Data Science Projekte? In diesem Artikel erfahren Sie, welche Faktoren Sie bei der Umsetzung beachten sollten, und wie Sie die richtigen Fragen stellen, um erfolgreiche Data Science Anwendungen umzusetzen.

Was sind die Besonderheiten von Data Science Projekten?

Das Besondere an Data Science Projekten ergibt sich aus dem Zusammenspiel der verschiedenen Bereiche Mathematik und Statistik, Informatik und Programmierung sowie fachliche Anforderungen an die Problemstellung. Diese Zusammenkunft der Disziplinen machen solche Projekte häufig komplex. 

Es braucht einen interdisziplinären Ansatz, der auch dem Fachbereich einen Austausch mit dem Data Science Team ermöglicht. Somit sollen Teammitglieder nicht nur Experten in ihrem Gebiet sein, sondern darüber hinaus über gute kommunikative Fähigkeiten verfügen.

Eine weitere Besonderheit an Data Science Projekten ist, dass Projekte häufig interaktiv ablaufen. Zunächst wird in der Regel ein “Proof of Concept” entwickelt, um zu ermitteln, ob eine Data Science Lösung die gewünschte Verbesserung bringt. Erst danach überführt man diese Lösung in einen Regelprozess, wo möglicherweise nochmal mehr Arbeit in die Datenvorverarbeitung gesteckt wird.

Doch dann ist das Data Science Projekt noch nicht umgesetzt. Denn ein implementiertes Modell verliert nach einer Zeit an Qualität. Das Bedeutet, dass Modelle immer wieder neu trainiert werden müssen, um diese an die Daten anzupassen (siehe folgende Abbildung).

Die Data Science Modelle verlieren nach einiger Zeit an Qualität und müssen deshalb regelmäßig  neu trainiert werden.
Da die Modellqualität über die Zeit abnimmt, müssen diese regelmäßig neu trainiert werden.

Das Wissen um die Besonderheiten der Data Science Projekte hilft uns dabei, die Aufgabenstellung zu unserem Data Science Projekt zu definieren. Wie genau das funktioniert, sehen wir uns im nächsten Abschnitt an.

Wie definiere ich die Aufgabenstellung? 

Die Aufgabenstellung eines Data Science Projektes ist das Herzstück dieses – doch wie definieren wir sie?

Die Definition der Aufgabenstellung für das Projekt sollte möglichst interdisziplinär entwickelt werden. Experten mit verschiedenen Fähigkeiten sollen gemeinsam an einer Idee für die Aufgabenstellung arbeiten. Die Entwicklung basiert dabei auf den vorhandenen Datenquellen, der fachlichen Problemstellung und den technischen Gegebenheiten bzw. der Machbarkeit.

Stellen Sie sich mit Ihrem Team für die Definition folgende Fragen:

  • Wie wird sich mein Geschäft in Zukunft entwickeln?
  • Was beeinflusst das Kaufverhalten meiner Kunden?
  • Wie kann ich die Interaktion mit meinen Kunden noch persönlicher gestalten?
  • Welche Produkte interessieren meine Kunden?
  • Wie kann ich meine Prozesse optimieren?

Das Ziel ist es am Ende des Tages eine klar definierte Fragestellung vorliegen zu haben mit welcher wir nach den passenden Data Science Anwendungsfällen suchen können. Lassen Sie uns gemeinsam ansehen, wie wir Data Science Anwendungsfälle identifizieren und nach Ihrem Nutzen bewerten.

Identifikation und Bewertung von Data Science Anwendungsfällen 

Data Science Anwendungsfälle ermöglichen uns die Betrachtung aller möglichen Szenarien, um mit Hilfe eines Systems oder Werkzeugs das fachliche Ziel zu erreichen. Im Kern geht es also darum:

  • zu verstehen, 
  • zu beobachten, 
  • die Sichtweise zu definieren, 
  • Ideen zu finden,
  • Prototypen zu entwickeln 
  • und unser Konzept zu verfeinern. 

Sehen wir uns das genauer an:

Grundvoraussetzung ist zunächst, dass alle Beteiligten Grundkenntnis über Data Science und KI verfügen sollten – nur so kann ein gemeinschaftliches Projekt geführt werden.

BewertungskriteriumAufgabe
Geschäftsmodell verstehen und die Problemstellung definierenSchwerpunkt festlegen: Schnittpunkt zu Kunden oder interne Prozesse?
Ziel definieren: welcher Prozess soll optimiert werden?
Anwendungsfälle nach Kosten & Nutzen bewertenNachdem eine Liste an potenziellen Anwendungsfälle gefunden ist, geht es an Bewertung: 
1. Komplexität der Implementierung (hängt von Datenverfügbarkeit, Qualität und Updates ab) 
2. Kosten- Nutzen-Aspekt (Mehrwert für benötigte Mittel)
Evaluierung der Daten1. Welche Daten werden benötigt: Wie viel Aufwand, um diese zu integrieren? 
2. Algorithmen: Gibt es bereits Implementierungen des Use Cases? 
3. Prozesse und Systeme: Welche Prozesse werden durch Projekt möglicherweise beeinflusst? Müssen Änderungen an existierenden Prozessen vorgenommen werden? 
4. Notwendige Erfahrung: Sind technische Skills und Fachwissen im Unternehmen vorhanden?
PriorisierungIn einem letzten Schritt sollten wir die Data Science Projekte final priorisieren, zum Beispiel durch eine Prioritätsmatrix mit 2 Runden.
1. Runde: Grobe Bewertung
2. Runde: Überprüfung und Priorisierung
Die Bewertung der Data Science Anwendungsfälle.

Dabei ist es sinnvoll, die Anwendungsfälle nach den folgenden Parametern zu clustern:

  1. Dem erforderlichen Daten-Input
  2. Den dafür erforderlichen KI-Ressourcen
  3. Produkte und Prozesse für welche die Use Cases in Frage kommen

Ist der passende Date Science Anwendungsfall gefunden, geht es an die Bildung des Teams.

Hier finden Sie ein Beispiel für einen Data Science Use Case, den wir gemeinsam mit unserem Kunden umsetzten: KI im B2B Vertrieb

Welche Teammitglieder brauche ich für ein erfolgreiches Data Science Projekt?

Die hohe Komplexität der Data Science Projekte setzt eine gute Teamzusammensetzung voraus, in der die verschiedenen Fähigkeiten aus den Bereichen Informatik, Mathematik und Domänenexpertise zusammengeführt werden.

Sehen wir uns die Teammitglieder mit den Anforderungen an Ihren Job an:

JobbezeichnungAnforderungen an Jobprofil
Data EngineerErfassung, Aufbereitung und Prüfung von Daten-Fundament für BigData, Data Warehouse, etc.
Aufgabe: Datenbanken und Datenformate bereitstellen
Hier geht es zu unserer Data Engineering Beratung!
Data ScientistML-Feature Definition, Weiterverarbeitung zu Trainingsdaten, Training der Algorithmen, Transfer der Infos zu Fachabteilungen
Fähigkeiten/ Aufgaben: bilden von Mathematischen und Stochastischen Modellen; Kenntnisse über Datenverarbeitung und Grundlagen der Programmierung; Branchenkenntnisse
ML-EngineerAufgabe: Unterstützung des Data Scientist bei Implementierung der KI in produktive Umgebung; Monitoring der ModelleArbeiten mit Ergebnissen der Data Science Experten
DevOps EngineerDevelopment und OperationsIst für Deployments verantwortlich und verwaltet die CI/CD PipelineIst für administrative und softwarebasierte Tätigkeiten im Unternehmen zuständig
DomänenexperteHilft Zielstellung anhand KI zu lösen durch fachliche Kenntnisse Tiefes Wissen über Prozesse und jeweilige Branche
Die verschiedenen Teammitglieder eines Data Science Projektes und Ihre Aufgaben in diesem.

In der folgenden Abbildung wird nochmals deutlich, wie die einzelnen Jobprofile in einem KI-Projekt ineinandergreifen und somit miteinander arbeiten.

Für ein Data Science Projekt benötigt man verschiedene Experten aus den Bereichen Data Engineering, Data Science und Machine Learning Engineering.
Das Zusammenspiel der verschiedenen Experten, um ein Data Science Projekt optimal zu leiten.

1. Organisatorisch: Es gibt 3 strukturelle Faktoren

  • Datenorientierte Ausrichtung (Management, Team, Ressourcen) 
  • Mehrwert durch (Wertschöpfungskette von Daten)
  • Disziplin (Fokus auf Problemstellung, die mit Data Science gelöst werden soll)

2. Technisch

  • Iterative Vorgehensweise (Modelle zu Beginn einfach halten). Der Vorteil: man durchläuft die Daten- und Modellpipeline komplett, sammelt wichtige Erkenntnisse und kann schnell Änderungen vornehmen
  • Zu Beginn: Grundlagen und Infrastruktur aufsetzen à Änderungen können schnell deployed und Ergebnisse getracked werden

Anwendungsbeispiel für ein erfolgreiches Data Science Projekt

Ein Unternehmen der Versicherungsbranche verfügt über 3.000.000 Aktivkunden, die sich in einer festen Vertragslaufzeit befinden. Marketing- und Vertriebsteam sind stets darum bemüht die Kunden von einem Upgrade des bestehenden Vertrags zu überzeugen. 

Das Management ist sich darüber bewusst, dass hier ein enormes Optimierungspotenzial bestünde, wenn die Mitarbeiter Informationen über die Interessen der Kunden erhalten würden. Durch konkrete Handlungsempfehlungen könnten Kunden mit hoher Wahrscheinlichkeit für ein Vertrags-Upsell identifiziert werden. Nur benötigt es für diese Optimierung die Analyse der Daten der vergangenen Interaktionen mit den Kunden. Daraufhin entscheidet sich das Management für den Aufbau eines Data Science Projektes.

Die ersten Schritte zum erfolgreichen Data Science Projekt

  1. Zielsetzung definieren: Aus den Kundendaten soll hervorgehen, welcher Kunde affin für einen Vertrags-Upsell ist.
  2. Data Science Projekte nach Priorität bewerten: Die Data Science Projekte Next Best Offer oder Upsell-Prognose sind am sinnvollsten
  3. Evaluierung der Daten: Wir benötigen vor allem die Daten zum vergangenen Kaufverhalten der Kunden, sowie demografische Daten zu den Kundenprofilen. Bis jetzt wurde noch kein Algorithmus in den Prozessen des Unternehmens implementiert.
  4. Finale Priorisierung des Data Science Projektes: Festlegung auf Upsell-Prognose, denn hier liegt der Fokus auf einem Optimierungsbereich und die vorhandenen Daten reichen aus
  5. Die Findung des Data Science Team: Es sollten Experten der Bereiche Datenverarbeitung, Modellentwicklung und Datenauswertung in einem stetigen Austausch stehen. Wichtig hierbei ist, dass alle Mitarbeiter, die mit dem Data Science Projekt in Kontakt kommen – sei es bei der Entwicklung, Implementierung oder Anwendung der Ergebnisse – über die allgemeine Funktionsweise dieses informiert sind. Nur so funktioniert ein Austausch.
  6. Der Umgang mit den Ergebnissen des Data Science Projektes: Die Ergebnisse sollen in Korrelation zu den Kunden betrachtet werden. Es ist somit wichtig, dass ein ständiger Austausch mit dem Kunden und den Mitarbeitern erfolgt, um qualitativ hochwertige Ergebnisse zu erzielen.

Ist das Data Science Projekt erst in die reale Umgebung implementiert, dienen die Ergebnisse der Upsell-Prognose als konkrete Handlungsempfehlungen für Marketing- und Vertriebsmitarbeiter. Diese nutzen die Ergebnisse, um personalisierte Angebote zu unterbreiten und steigern somit die Upsell-Quote. 

Sie sehen gerade einen Platzhalterinhalt von Youtube. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.

Mehr Informationen
In 6 Minuten erklären wir, welche Hürden zu überwinden sind, um ein KI-Projekt erfolgreich umzusetzen.

Fazit – Data Science Projekte erfolgreich umsetzen ist leicht (wenn man weiß wie)

Wie wir sehen, ist das A und O für den Aufbau und die Umsetzung eines erfolgreichen Data Science Projektes: Das Data Science Team und der Umgang mit den Daten selbst. Eine interdisziplinäre Zusammenarbeit und eine funktionierende Kommunikation ist die Grundvoraussetzung für die korrekte und zielführende Auswertung von vorhandenen Daten über die Kunden. 

Sie möchten gerne ein Data Science Team aufbauen oder wollen zu Data Science Projekten beraten werden? Mit Unterstützung unserer Data Science Beratung können Sie Ihr Data Science Projekte erfolgreich umsetzen.

FAQ – Die wichtigsten Fragen schnell beantwortet

Wie laufen Data Science Projekte ab?

Zunächst sollte eine Zielsetzung definiert werden, damit für die anschließende Priorisierung der Data Science Use Cases klar ist, was erreicht werden soll. Anschließend an die Priorisierung werden die Daten evaluiert, damit wir im nächsten Schritt die für uns passenden Data Science Projekte filtern können. Ist das passende Projekt gefunden geht es an die Zusammensetzung des Data Science Team.

Was braucht man für ein erfolgreiches Data Science Projekt?

Für ein erfolgreiches Data Science Projekt benötigt man:
1.     Ein Team aus Spezialisten verschiedener Fachabteilungen.
2.     Jede Menge Daten.
3.     Eine feste Zielsetzung.
4.     Eine gute Kommunikation.
5.     Geduld.

Wie findet man das passende Data Science Projekt?

Grundsätzlich sollte man sich zu Beginn fragen, was man genau mit der Implementierung des Data Science Projektes erreichen möchte: Welche Prozesse des Unternehmens können durch ein Data Science Projekt optimiert werden? Sobald die Fragestellung definiert ist, sollte eine Liste mit möglichen Data Science Projekten erstellt werden, die wiederrum durch die Evaluation der Daten des Unternehmens nach Nutzen priorisiert werden. Zum Schluss folgt die finale Auswahl des am besten passenden Data Science Projektes.

Profilbild von Vinzent Wuttke Geschäftsführer Datasolut GmbH
Vinzent Wuttke
Geschäftsführer

Ihr Ansprechpartner

Ob und wie künstliche Intelligenz Ihnen weiterhelfen kann, können Sie in einem ersten, unverbindlichen Gespräch mit uns herausfinden.

In diesem Gespräch erfahren Sie:

  • Wie Ihr Use-Case technisch am besten umgesetzt werden kann
  • Wie wir maximal sicher mit Ihren Kundendaten umgehen
  • Wie lange wir für die Umsetzung benötigen und wie ein konkreter Projektplan aussehen könnte
Jetzt Erstgespräch vereinbaren

Weiterlesen

Machine Learning Vor 6 Monaten

Data Mining: Algorithmen, Definition, Methoden und Anwendungsbeispiele

Data Mining ist ein analytischer Prozess, bei dem computergestützte Methoden eingesetzt werden, um möglichst selbstständig und effizient interessante Datenmuster in großen Datensätzen zu identifizieren. Die verwendeten Algorithmen stammen aus der […]
Wie funktioniert Machine Learning? Eingabedaten, Algorithmen und Ausgabe.
Machine Learning Vor 6 Monaten

Machine Learning: Definition, Algorithmen, Methoden und Beispiele

Machine Learning (deutsch: maschinelles Lernen) ist eine Anwendung der Künstlichen Intelligenz (KI). Computersysteme lernen automatisch Muster und Zusammenhänge aus Daten und verbessern sich selbst, ohne explizit programmiert zu werden. Machine […]
Machine Learning Vor 6 Monaten

MLflow: Eine Plattform für den Machine Learning Lifecycle

MLflow ist eine Machine Learning Plattform Komponente und begleitet den kompletten Machine Learning Prozess eines Data Science Projektes. Ziel ist die Dokumentation, Reproduzierbarkeit und das Deployment zu vereinfachen. Das Silicon […]
Deep Learning Objekterkennung auf einer Straße
Machine Learning Vor 8 Monaten

Machine Learning vs. Deep Learning: Wo ist der Unterschied?

Machine Learning und Deep Learning sind 2 Teilbereiche der Künstlichen Intelligenz, doch was unterscheidet sie und wann nutzen wir Machine Learning vs. Deep Learning? Das klären wir in diesem Artikel! […]
Machine Learning Vor 1 Jahr

Aufbau eines Data Science Teams

Sich mit Themen wie der Künstlichen Intelligenz, Big Data oder Machine Learning zu befassen, wird von Jahr zu Jahr für viele Unternehmen immer wichtiger. Anhand der Börse ist zu erkennen, wie erfolgreich Tech-Unternehmen mittlerweile sind […]
Beitragsbild: Machine Learning im E-Commerce
Customer AnalyticsMachine Learning Vor 1 Jahr

Machine Learning im E-Commerce – Anwendungsfälle und Nutzen

Wie lässt sich Machine Learning im E-Commerce sinnvoll einsetzen? Wir zeigen Ihnen interessante Anwendungsfälle von Machine Learning im E-Commerce, die Ihren Umsatz steigern und Ihre Marketingkosten senken.   Wie lässt sich Machine Learning im E-Commerce einsetzen?  Mittlerweile ist […]
Beitragsbild: Textklassifikation
Machine Learning Vor 2 Jahren

Textklassifikation

Die Identifizierung und Analyse großer Textmengen stellt einen wichtigen Antreiber für eine Vielzahl unternehmensrelevanter Entscheidungen dar. Grund ist der hohe Erkenntnisgewinn, der durch Analyse dieser Textmengen entsteht. Da die Extraktion […]
Beitragsbild: AutoML
Machine Learning Vor 2 Jahren

Ist Auto ML die Zukunft von Data Science?

AutoML ist ein heiß diskutiertes Thema, welches eine enorme Effizienzsteigerung für den Machine Learning Prozess verspricht. Doch wie viel Potential steckt in dem automatisierten Machine Learning Ansatz? Wir zeigen Ihnen, […]
Prognosemodell Beispielbild
Machine Learning Vor 2 Jahren

Was ist eine Absatzprognose? Faktoren, Verfahren und Methoden

Absatzprognosen helfen dem Unternehmen dabei, zukünftige Entwicklungen der Absatzzahlen voraussagen zu können. Dies ist besonders hilfreich, um frühzeitige Entscheidungen in Bezug auf Planungen zu treffen und so Kosten einzusparen. In diesem […]
Newsletter und Updates

Sie sehen gerade einen Platzhalterinhalt von HubSpot. Um auf den eigentlichen Inhalt zuzugreifen, klicken Sie auf die Schaltfläche unten. Bitte beachten Sie, dass dabei Daten an Drittanbieter weitergegeben werden.

Mehr Informationen
Erstgespräch vereinbaren