Ein Data Engineer beschäftigt sich mit dem Zusammentragen, Aufbereiten und Prüfen von Daten. Die Tätigkeit bildet die Grundlage für Big Data-, Data Warehouse und Analyseprojekte im Kontext von Data Science. Data Engineers sind wichtige Jobprofile jeder datengetrieben Organisation.
Steigen wir direkt ein!
Data Engineer Jobbeschreibung
Das Berufsfeld des Data Engineerings beschäftigt sich mit dem Zusammentragen, Aufbereiten und Prüfen von Daten. Die Tätigkeit bildet die Grundlage für Analyseprojekte im Kontext von Data Science Projekten und bei dem Umgang mit Big Data. Ein Data Engineer (oder auf Deutsch Datentechniker) modelliert und skaliert Datenbanken und stellt so den Datenfluss innerhalb eines Unternehmens sicher. Für diese Aufgabe greift der Datentechniker auf eine große Bandbreite an Werkzeugen und Technologien zurück:
- Relationale Datenbanken
- ETL-Tools
- Big Data Technologien (Apache Spark, Hadoop oder andere No-SQL-Datenbanken)
- Cloud Technologien wie AWS S3
Da immer mehr Unternehmen auf Cloud Lösungen setzen, gehört das Einrichten und Konfigurieren der Cloud ebenfalls zu den Kernthemen des Data Engineerings.
Dabei können sich die Fachkräfte ihre Branche nahezu komplett frei aussuchen – denn Themen wie Industrie 4.0, IoT – Internet of Things – oder die Digitalisierung der Customer Journey betreffen so gut wie alle Unternehmen.
Aktuell finden sich viele freie Jobs beispielsweise im Maschinen- und Anlagenbau, der Automobilbranche oder der Chemieindustrie. Aber auch in der öffentlichen Verwaltung und im Marketing werden Datentechniker immer mehr gefragt.
Mehr zum Thema Data Science finden Sie hier.
Welche Fähigkeiten braucht ein Data Engineer?
Ein Datentechniker muss umfangreiche Kenntnisse im Bereich der Datenverarbeitung besitzen. Neben vertieftem Wissen um die Anforderungen eines Datenprozesses sollte ein Datentechniker ebenfalls über fortgeschrittene Kenntnisse im Programmieren verfügen. Denn es kommt im Arbeitsalltag immer mal wieder vor, dass bestehende Algorithmen überarbeitet, angepasst oder neu entwickelt werden müssen.
Neben technischen Kenntnissen sollte ein Datentechniker aber auch über Soft Skills im Bereich zwischenmenschlicher Kommunikation verfügen, denn der tägliche Kontakt mit fachfremden Personen aus unterschiedlichsten Abteilungen gehört zum Beruf dazu. Darum sollte ein Datentechniker in der Lage sein, komplizierte technische Sachverhalte möglichst einfach und für Laien verständlich wiedergeben zu können.
Zusammengefasst kann man sagen, dass ein Datentechniker Verständnis von mathematischen, physikalischen und technischen Prozessen haben muss. Zudem sollte Interesse an der Optimierung von Infrastrukturen bestehen.
Welche Aufgaben hat ein Data Engineer?
Datenspezialisten müssen in Ihrem Arbeitsalltag unterschiedlichste Aufgaben lösen. So kümmert sich ein Data Engineer um alle Prozesse, die rund um die Erstellung, Speicherung und Pflege von Datensätzen ablaufen. Ein wichtiger Kernaspekt ist die Aufbereitung und Weitergabe von Daten, das sogenannte Handling. Auch der Aufbau und die Überwachung von IT-Infrastruktur gehört mit zu den Aufgaben eines Datentechnikers.
Abhängig vom Unternehmen können hier Konzeptionen, der Einkauf und das Einrichten von Hardwarekomponenten und die Auswahl der optimalen Software gefordert sein.
Data Engineer Schnittstelle zwischen Hardware und Datenverarbeitung
Der Datentechniker ist an der Schnittstelle zwischen Hardware und Datenverarbeitung beschäftigt. Im Rahmen des Jobs werden Datenquellen überwacht und die Instanzen, die für die Analyse und Weiterverwendung der generierten Daten im Bereich Big Data zuständig sind, gemanagt. Weiterhin optimiert der Data Engineer vorhandene Algorithmen oder optimiert durch spezielle Tools die innerbetriebliche Datenanalyse oder bestehende Datenbanken.
Nicht zuletzt ist in vielen Unternehmen der Datentechniker für die Sicherheit und Zuverlässigkeit des gesamten IT-Systems verantwortlich. Daher werden in dem Berufsfeld auch vertiefte Kenntnisse in Bezug auf Datensicherheit und Datenschutz gefordert. Der Data Engineer arbeitet ebenfalls mit Datenarchitekturen wie der Data Lakehouse Architektur.
Was verdient ein Data Engineer?
Je mehr Daten innerhalb eines Unternehmens verarbeitet werden, desto stärker wird nach Fachkräften mit entsprechendem Wissen gesucht. Darum können sich angehende Data Engineers auf hohe Einstiegsgehälter freuen. So liegt das Einstiegsgehalt im Durchschnitt bei bereits 50.000 Euro im Jahr!
Hier findest du eine aktuelle Quelle über die Gehaltsentwicklung.
Mit steigender Erfahrung lassen sich bis zu 70.000 Euro jährlich verdienen. Gerade in den deutschen IT-Clustern wie München, Hamburg oder Berlin, können die Gehälter noch deutlich über dem Durchschnitt liegen.
Wer allerdings noch eine Schippe Gehalt draufsetzen möchte, sollte sich nach Jobs im Bereich Data Engineering in den USA umsehen. Hier wird für den Beruf deutlich mehr gezahlt, gleichzeitig ist die Steuerlast geringer. Doch auch in Europa gehört der Datentechniker mit zu den am besten bezahltesten, gefragtesten Berufen auf dem Markt.
Die Data Engineer Ausbildung
Aktuell besteht in Deutschland leider noch nicht die Möglichkeit, Data Engineering als eigenen Studiengang zu belegen. Da jedoch die Nachfrage nach den Datenspezialisten in den letzten Jahren rasant gestiegen ist, stellt der Data Engineer den klassischen Quereinsteiger dar. Die aktuellen Fachkräfte kommen zumeist aus den Fachbereichen der Informatik, Wirtschaftsinformatik oder der Computertechnik.
Auch ist es möglich, sich nach einer abgeschlossenen Statistikausbildung als Datentechniker weiterzubilden. Wer sich als Data Engineer qualifizieren möchte, sollte unbedingt bereit sein, sich in bestehende Datenprojekte einzuarbeiten – Learning on the Job ist die Devise!
Übrigens: Nicht nur mit einem Studium gelangt man zu der benötigten Qualifikation! Vielmehr gelten Datentechniker, die eine Ausbildung im IT-Bereich absolviert haben, als echte Praktiker – und sind dementsprechend gefragt!
Data Engineer vs. Data Scientist
Oft werden in Jobbeschreibungen diese zwei doch sehr verschiedenen Tätigkeitsbereiche verwechselt bzw. nicht klar definiert. Auch in Beratungsprojekten kommt es häufig vor, dass Data Science Skills ausgeschrieben sind, aber Data Engineering Skills verlangt werden. Dies kann zu großen Problemen und Unzufriedenheit führen, da die Betroffenen komplett unterschiedliche Fähigkeiten aufweisen.
Aus der Praxis (unzähligen Data Science und Big Data / Data Engineering Projekten) habe ich mitgenommen, dass die Teams besonders gut funktionieren, wenn die Rollen klar definiert sind.
Benötigen Sie Unterstützung?
Gerne helfen wir Ihnen bei den ersten Schritten zur eigenen Datenplattform oder begleiten Sie auf Ihrem Weg zur Data Driven Company.
Data Engineer vs. Machine Learning Engineer
Ein Data Engineer wird häufig auch mit einem Machine Learning Engineer verwechselt. Ein Machine Learning Engineer hat eher einen Software Development Hintergrund und kümmert sich vor allem um die Operationalisierung und Instandhaltung von Machine Learning Modellen. Hierbei wird getrackt, ob die Modelle noch die entsprechende Qualität haben oder ob diese erneut trainiert werden müssen.
Das Berufsbild Machine Learning Engineer ist noch relativ neu, aber durch den schnellen Fortschritt im Bereich der künstliche Intelligenz und maschinellem Lernen, gewinnt dieser Beruf immer mehr an Bedeutung.
Ihr Ansprechpartner
Ob und wie künstliche Intelligenz Ihnen weiterhelfen kann, können Sie in einem ersten, unverbindlichen Gespräch mit uns herausfinden.
In diesem Gespräch erfahren Sie:
- Wie Ihr Use-Case technisch am besten umgesetzt werden kann
- Wie wir maximal sicher mit Ihren Kundendaten umgehen
- Wie lange wir für die Umsetzung benötigen und wie ein konkreter Projektplan aussehen könnte